Archive for the ‘News’ Category

Perspectives, Summer 2014, Physical Sciences – Oncology Magazine

Wednesday, September 10th, 2014

Summer 2014 Newsletter

Pauline Davies and Paul Davies interviewed on Mornings with Ian Henschke (ABC)

Tuesday, July 29th, 2014

Originally Posted: ABC (Australian Broadcasting Corp – Mornings with Ian Henschke) – 25/07/2014 link

Professor Paul Davies, a man familair to our ABC audience, visited us from his new home in Arizona along with his wife Professor Pauline Davies. They were here to deliver a lecture on the search for the origins of cancer. Ian put it to him that he was better known for his background in philosophy and cosmology and began by asking why he and his wife were now involved in cancer research…

Discovery of a primordial cancer in a primitive animal – Study published in Nature Communications

Wednesday, June 25th, 2014

A study just published in Nature Communications by an international team of researchers shows that cancer is even found in very primitive multicellular animals called hydra.
primordial-cancer

Read the press release here:
http://phys.org/news/2014-06-discovery-primordial-cancer-primitive-animal.html

And to hear Paul Davies discuss how this fascinating work impacts our view about the origins of cancer, listen to the interview on ABC Radio National: http://www.abc.net.au/radionational/programs/breakfast/cancer-as-old-as-multicellular-life-study/5548372

Perspectives, Spring 2013, Physical Sciences – Oncology Magazine

Monday, January 27th, 2014

perspectives spring 2013 cover

Adelaide Festival: What is Cancer and How Can We Control It?

Wednesday, November 20th, 2013

professor-paul-daviesProfessor Paul Davies gave a lecture about the atavism theory of cancer at the Adelaide Festival of Ideas in October 2013.

Listen to this fascinating talk here!

 

Adelaide Festival of Ideas Podcast

 

Also, take a look at the review given on this lecture here!

Review of Adelaide Festival Lecture

Paul Davies addresses the National Breast Cancer Coalition Summit

Thursday, May 16th, 2013

Understanding the Transition to Cancer Metastasis – Results of a Battery of Tests on Cancer Cells from Network of Physical Scientists, Engineers, and Cancer Researchers

Tuesday, April 30th, 2013

A team of 95 physicists, engineers, mathematicians, chemists, computational scientists and biologists working on different experiments in 20 US laboratories has gained a new perspective on cancer by pooling their research in a coordinated way. The motivation was to gain insights into the differences between non-malignant and metastatic cancer cells – those that leave the primary tumor and spread to other organs.

Although most aspects of the study have been conducted before, attempts to integrate the results have been hampered by the diversity of samples used. For the first time, a wide range of experiments was conducted simultaneously on the same standardized cells. The results were just published in Nature’s Scientific Reports paper entitled, A physical sciences network characterization of non-tumorigenic and metastatic cells (10.1038/srep01449).

Using two breast cell lines, in which cells are artificially immortalized and bred in laboratories, the scientists focused on the physical changes that accompany the transition of cancer cells to a motile, metastatic form. While metastasis is generally recognized as a critical step in the progression of cancer, there is an incomplete understanding of the physical biology of this transformation. The researchers state that: “Understanding the physical forces that metastatic cells experience and overcome in their microenvironment may improve our ability to target this key step in tumor progression.”

The research was conducted by the network of 12 Physical Sciences-Oncology Centers around the country (PS-OCs), under the auspices of the Office of Physical Sciences-Oncology at the National Cancer Institute. The centers were set up 3 years ago to foster collaboration between physical scientists, biologists and oncologists in order to achieve new insights into cancer.

Laboratories in each center were supplied with identical cell lines and common reagents, and considerable effort was expended to ensure that all the conditions were standardized and documented at regular intervals. This allowed the laboratories to leverage their own expertise and for the results of all the measurements to be integrated across the study.

The number of distinct techniques used to characterize the cells was impressive — more than would be possible in any of the individual labs on their own. One of the lead authors of the paper, Jack (Rory) Staunton, a PhD physics student at Arizona Statue University, comments:

“The work has enabled a comprehensive cataloging and comparison of the physical characteristics of non-malignant and metastatic cells, and the molecular signatures associated with those characteristics. This made it possible to identify unique relationships between observations.”

“We compared the stiffness of normal breast cells and highly metastatic breast cancer cells, and found the cancer cells to be significantly more ‘squishy’ or deformable,” Staunton said. “This makes sense because in order for a cell to metastasize, it has to squeeze through tight passages in the lymphatics and microvasculature, so being squishy helps cancer cells spread through the body.”

Other techniques used included atomic force microscopy, ballistic intracellular nano-rheology, cell surface receptor expression levels, differential interference contrast microscopy, micro-patterning and extracellular matrix secretion, and traction force microscopy.

Staunton, who has been involved in ASU’s PS-OC center since its inception three years ago says the experience has helped his growth as a researcher: “It is the perfect habitat for budding scientists and for trans-disciplinary collaborations.”

Although the cell line exercise involved considerable organization and commitment, it sets a benchmark for future interdisciplinary work in cancer research, and is expected to become the model for future large collaborations.

H Foundation Basic Science Symposium – The Dynamic Nucleus of the Cell: Chromatin, Chromosomes, and Disease

Monday, February 11th, 2013

Northwestern University PSOC Symposium

 

Physics Not Biology May Be Key to Beating Cancer – Paul Davies

Monday, January 28th, 2013

AS THE US faces up to its “fiscal cliff” of massive spending cuts, a major issue is burgeoning health costs. High on the list of those costs is cancer therapy, with the clamour for hugely expensive drugs – many of which have little or no clinical benefit – set to grow as baby boomers age.

Cancer research swallows billions of dollars a year, but the life expectancy for someone diagnosed with cancer that has spread to other parts of the body has changed little over several decades. Therapy is often a haphazard rearguard action against the inevitable. And the search for a general cure remains as elusive as ever.

Recognising this depressing impasse, the US National Cancer Institute (NCI) took a bold step in 2008 by deciding that the field might benefit from the input of mathematicians and physical scientists, whose methods and insights differ markedly from those of cancer …

New Scientist Magazine

Cancer and Astrobiology Symposium in Antofagasta, Chile – June 2012

Thursday, October 18th, 2012

Symposium Program
Speaker Biographies

Cancer and the Desert – A Crossroads between Astrobiology and Cancer Research

Gareth Owen

Gareth Owen

Paul Davies and Pedro Zamorano

Question from John Coates

Felipe Court

Paul Davies and Pedro Zamorano

Paul Davies

Pauline Davies

Pauline Davies