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In  this  paper  we  discuss  the  entropy  and  information  aspects  of  a living  cell.  Particular  attention  is
paid  to the  information  gain  on  assembling  and  maintaining  a  living  state.  Numerical  estimates  of  the
information  and  entropy  reduction  are  given  and  discussed  in  the  context  of  the  cell’s  metabolic  activity.
We  discuss  a solution  to an  apparent  paradox  that there  is  less  information  content  in DNA  than  in the
eywords:
enetic code
ntropy
hannon information
hermodynamics

proteins  that  are  assembled  based  on the  genetic  code  encrypted  in  DNA.  When  energy  input  required  for
protein  synthesis  is  accounted  for,  the  paradox  is  clearly  resolved.  Finally,  differences  between  biological
information  and  instruction  are  discussed.

© 2012 Elsevier Ireland Ltd. All rights reserved.
nformation theory

. Introduction

Over the past century relatively little attention has been paid
o the physical basis of embryology. With the discovery through
he space program that the very important cytoskeletal proteins,
uch as microtubules, are differentially sensitive to gravity (Portet
t al., 2003), it is clear that the fundamental conceptual basis of
mbryology cannot be developed merely by employing a classical
olecular genetic framework. In addition to gravity, other phys-

cal forces such as surface tension due to intercellular adhesion
Goel et al., 1970, 1975; Gordon et al., 1972, 1975; Steinberg, 1996;
rinkaus, 1984a), the mechanical forces exerted during cell division
Rappaport, 1996), and physical waves of cytoskeletal expan-
ion and contraction that traverse embryos (Gordon, 1999) all
rovide important non-chemical contributions to morphogenesis
f embryos. Moreover, cell differentiation leading to morpholog-
cal differences between cells in various tissues and organs are
xtreme examples of what appears to be an entropy reduction
rocess, i.e. self-organization. This apparent contradiction of the
econd law of thermodynamics drew attention of many physicists
eginning with Schrödinger (1967).  At the macroscopic level, liv-

ng systems are thermodynamically open and far-from-equilibrium

ystems, hence the balance of entropy at this level must necessar-
ly involve metabolic energy production as well as heat and waste
roduct dissipation into the external environment. A more subtle

∗ Corresponding author at: 3-336 Cross Cancer Institute, 11560, University
venue, Edmonton, Alberta T6G 1Z2, Canada. Tel.: +1 780 432 8906.

E-mail addresses: jackt@ualberta.ca, jack.tuszynski@gmail.com (J.A. Tuszynski).

303-2647/$ – see front matter ©  2012 Elsevier Ireland Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.biosystems.2012.10.005
question arises at the level of a single cell, especially an embry-
onal cell, that undergoes rapid self-organization, all the while being
sensitive to physical forces acting on it from the environment.
Houliston et al. (1993) have shown by means of time-lapse video
recordings that a wave of cytoplasmic reorganization, involving dis-
placement of perinuclear organelles and movements of the surface
relative to the underlying layer of cytoplasm, occurs prior to first
cleavage. This wave requires dynamic microtubules in association
with the organelles. Precleavage waves have also been described,
progressing in the same direction (Yoneda et al., 1982). In many
species rearrangements of the cytoplasm directed by external cues
may  introduce new axes of cleavage (Driesch and Morgan, 1895;
Speksnijder et al., 1990). Thus, there appears to be a relation-
ship between microtubules and rearrangements of cytoplasmic
components induced by precleavage waves, but the correlation
between them is unknown. It is, therefore, important to under-
stand the entropy reduction contributions arising from internal
self-organization, information storage and transfer, at a single cell
level, as the only way  to reconcile this with laws of thermodynam-
ics is by balancing these free energy changes with metabolic energy
expenditures. We  will discuss these processes in some detail in this
paper. This paper is largely aimed at providing an overview of the
problem of linking biological organization with information and
entropy.

Living cells perform numerous complicated, synchronized and
very specific tasks in order to maintain their biological functions.

These complex tasks require information input (e.g. a chemical
gradient), information processing (signals sent into the cell from
membrane receptors), and instruction (e.g. reorganization of the
actin cytoskeleton for motility) as the output of the underlying

dx.doi.org/10.1016/j.biosystems.2012.10.005
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:jackt@ualberta.ca
mailto:jack.tuszynski@gmail.com
dx.doi.org/10.1016/j.biosystems.2012.10.005
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omputations. In order to function, a living cell, similarly to a man-
ade machine, requires specific components to be interconnected

n an intelligent fashion so they can perform the desired tasks. In
ddition, a steady supply of energy must be provided to be con-
erted, with some level of efficiency, into useful work and to keep
he organism at a constant physiological temperature. However, it
hould be noted that living organisms cannot simply be reduced to
achines as demonstrated by Rosen (1991).  In fact, organisms are

ifferent from machines because they are characterized as being
losed to efficient cause which means that the catalysts needed for
ts operation must be generated internally. As Rosen stated it “A

aterial system is an organism if, and only if, it is closed to effi-
ient causation”. The closure of the relational diagram he showed
stablishes a category of objects called organisms that are clearly
istinguishable from machines. This distinction arose from a proce-
ure which did not reduce the system to its material parts, nor did

t explicitly invoke dynamics. Also, the concept of replication in this
ontext means that what is replicated is a functional component,
ot a material part as such. Thus while organisms are complex, not
ll complex objects are organisms. An organism possesses the kind
f unity invoked when discussing autopoietic systems (Maturana
nd Varela, 1980). It is necessary and useful to recognize functional
omponents as making up separate tangible aspects of the system.
iological cells are constructed from yet smaller machine-like enti-
ies called organelles. Cell organelles include mitochondria, Golgi
omplexes, endoplasmic reticulum, and the protein filaments of
he cytoskeleton such as microtubules and actin filaments (micro-
laments). Even below this level there are machine-like parts of
he cell, namely motor proteins and enzymes, that perform specific
unctions involving energy input and power output, e.g. transport,

otility and cell division (Alberts et al., 1994). A critically impor-
ant macromolecule is ATP (and its relative GTP), which serves as
he primary energy currency of the cell. ATP is used to build com-
lex molecules, provide energy for nearly all living processes in
rder to power virtually every activity of the cell. While organic
omponents of nutrients contain numerous low-energy covalent
onds, they are not directly useful to do most type of work in the
ell. Thus, low energy bonds must be translated into high-energy
onds using ATP energy by removing one of the phosphate-oxygen
roups, turning ATP into ADP. Subsequently, ADP is usually imme-
iately recycled in the mitochondria where it is recharged and
e-emerges again as ATP. ATP synthesis in a mitochondrion requires
pproximately 60 kJ/mol of energy delivered through complex and
ell-tuned electron transport reactions. ATP hydrolysis releases

pproximately 30.5 kJ/mol of free energy (dependent on the con-
entration and pH values), which can be viewed as a biological
nergy unit. The human body requires the production of its weight
n ATP every day in order to function, which translates into 1021 ATP

olecules per second. Since there are on the order of 3.5 × 1013

ells in the human body and each cell has on the order of 103

itochondria, there are approximately 3 × 104 ATP production
vents per mitochondrion per second. This process involves a com-
lex set of biochemical reactions called oxidative phosphorylation
hose net effect is a conversion of one molecule of glucose into

8 molecules ATP. At any instant each cell contains about one bil-
ion ATP molecules. Because the amount of energy released in ATP
ydrolysis is very close to that needed by most biological reactions,

ittle energy is wasted in the process. Generally, ATP is coupled to
nother reaction such that the two reactions occur nearby utiliz-
ng the same enzyme complex. Release of phosphate from ATP is
xothermic while the coupled reaction is endothermic. The termi-
al phosphate group is then transferred by hydrolysis to another

ompound, via a process called phosphorylation, producing ADP,
hosphate (Pi) and energy. Phosphorylation often takes place in
ascades becoming an important signaling mechanism within the
ell. Importantly, ATP is not excessively unstable, but it is designed
tems 111 (2013) 1– 10

so that its hydrolysis is slow in the absence of a catalyst. This insures
that its stored energy is released only in the presence of an appro-
priate enzyme. The mitochondrion, where ATP is produced, itself
functions to produce an electro-chemical gradient – similar to a
battery – by accumulating hydrogen ions between the inner and
outer membrane. This electro-chemical energy comes from the
estimated 10,000 enzyme chains in the membranous sacks on the
mitochondrial walls. As the charge builds up, it provides an electri-
cal potential that releases its energy by causing a flow of hydrogen
ions across the inner membrane into the inner chamber. The energy
causes an enzyme to be attached to ADP, which catalyzes the addi-
tion of a third phosphorus to form ATP. Energy production and
utilization is essential to life and is also part of the information
processing equation as will be discussed later in the paper.

2. Probability, entropy and information

From the point of view of information processing, the descrip-
tion of both a complex system with a large number of degrees of
freedom and a system with a small number of degrees of free-
dom that is unstable, practically requires an infinite number of
bits of information. Biological systems fall into this category and
require a statistical description of their behavior. Statistical physics
(Penrose, 1979) offers a simple method to circumvent the problem
with incomplete knowledge of the system’s initial state. Instead of
a single system, it concerns itself with an ensemble of many identi-
cal copies of the same system (called replicas) that only differ in the
choice of their initial state. The state of an ensemble with a uniform
distribution of states over the available domain in phase space of
the individual system is referred to as thermodynamic equilibrium.
Given the volume of the available domain S in the phase space we
assign the meaning of probability P(A) to the volume of an arbitrary
subset A of S. If domain S is not covered uniformly by its states, then
we introduce the probability density �(s) determined for all states
s in S. The probability that a state belongs to a given subset A of the
available state space S, is

P(A) =
∫

A

ds �(s). (1)

The probability density is normalized to unity, so that∫
S

ds �(s) = 1. (2)

If the probability P(A) is known, then as a result of finding that
the state indeed belongs to the set A the observer has gained a
certain amount of information about the system under consider-
ation and what was initially a probability P(A) has now become a
certainty. The smaller the probability P(A), the greater the infor-
mation gain. Conversely, if P(A) was  large, the information gain is
small. Hence, the information gain I is a decreasing function of P.
The amount of information about two  independent events whose
probability is the product of individual probabilities is the sum of
the information values for each of the events separately. A function
of probability P that has both these properties can be defined as

I(A) = −k logb P(A), (3)

where k and b are constants. Since the logarithm of unity is zero, the
outcome of an event A that was certain before the observation took
place, P(A) = 1, and no new information is gained, I = 0. Eq. (3) was

first derived in a famous paper on information theory (Shannon,
1948). The coefficients k and b determine the units of informa-
tion. For k = 1 and b = 2 we obtain the unit of information called one
bit. One bit is the amount of information gained as a result of an
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xperiment with two equally probable outcomes (P = 1/2), which
an be represented by the binary digits 0 or 1:

 = −log2
1
2

= 1. (4)

If, in addition to the probability P(A) that a state belongs to a cer-
ain subset A of the state space S, the entire probability density �(s)
s known, we can determine the average information gain achieved
y the observer after the determination of state s of the system as

 = −kB

∫
ds �(s) ln �(s). (5)

This expression is identical to the one first proposed by
oltzmann (1872) and later extended to a general situation of an
rbitrary statistical ensemble by Gibbs (1902).  These expressions
rovided a statistical interpretation of entropy, a quantity whose
erm was coined by Clausius (1865).  Entropy represents the part
f the internal energy that cannot be used for work, divided by
bsolute temperature T. Here, ln stands for the natural logarithm
ith a base b = e ≈ 2.718, while the constant k was  selected as

B = 1.38 × 10−23 J/K, which equals to the gas constant R divided by
vogadro’s number NA and is called the Boltzmann constant. The
nit of entropy is therefore J/K.

For a given domain of available states in the phase space,
he probability density which is constant in this domain A, and
ero elsewhere (corresponding to the microcanonical ensemble),
s given by

(s) =
{

˝−1

0

for s ∈ A

for s /∈ A
. (6)

For the probability to be properly normalized to unity, the con-
tant  ̋ represents the volume of domain A :  ̋ =

∫
Ads.  The entropy

s then

 = −kB

∫
S

ds �(s) ln �(s) = kB

∫
A

ds ˝−1 ln  ̋ = kB ln ˝.  (7)

The instability of motion, i.e. the process of mixing on a micro-
copic scale, leads to the law of entropy increase over time, which
s commonly referred to as the second law of thermodynamics.

Mawell (1871) contemplated the concept of a hypothetical
eing that would be able to observe the velocities of individual gas
olecules moving about in a container. The container would have

 partition with an opening that can be covered by a latch. This
thought experiment” has been referred to as Maxwell’s demon
ince it was imagined that a hypothetical demon would be in charge
f closing and opening the hole in the partition allowing only suffi-
iently fast particles to move from right to left and only sufficiently
low ones to move from left to right across the partition. This would
ver time result in a temperature increase in the left part of the con-
ainer and a temperature decrease in the right part of the container.
he thus created temperature gradient is in contradiction with the
econd law of thermodynamics due to the work performed in the
rocess by thermal fluctuations alone in a gas at a thermodynamic
quilibrium.

Shannon’s information defined as negative entropy has enabled
he resolution of the Maxwell’s demon paradox in terms of the
nergy cost put on information content. Szilard’s solution (Szilard,
929) of the problem endowed the demon with information, i.e.
hannon’s information balancing out the changes in the entropy of
he gas. The energetic cost of one bit of information at physiological
emperature is ln 2 kBT = 3 × 10−21 J = 18.5 meV  which is compara-

le to the thermal energy unit kBT (Cook, 1984) freely available in

 system kept at a constant temperature T. While a single bit of
nformation has almost no cost in terms of energy input, several
its require concerted effort in order to be encoded.
tems 111 (2013) 1– 10 3

3. Nucleic acids, DNA, and the genetic code

Nucleic acids are used to store and transmit genetic information
in cells and come in two  varieties: the deoxyribonucleic acid (DNA)
and the ribonucleic acid (RNA). RNA differs from DNA by having
one additional oxygen atom on each sugar and one missing carbon
atom on each thymine base. DNA and RNA perform distinct func-
tions in the cell. DNA is more stable and hence better suited for
information storage. RNA is less stable and hence more useful in
information transfer as a messenger, a translator and a synthetic
machine (Saenger, 1984).

Nucleic acids are linear polymers of nucleotides, each of which is
composed of a sugar phosphate group and a disk-shaped base group
linked by phosphodiester bonds O PO2

− O . The sugar ribose
occurs only in RNA. In DNA, it is replaced by the sugar deoxyri-
bose. The sugar-phosphate groups are connected together to form a
hydrophilic backbone (phosphates have a negative electric charge)
and the mainly hydrophobic bases are located off the side of the
chain. In a water environment, one side of the chain is protected
by the hydrophilic backbone while the other side is exposed. The
formation of a phosphodiester bond is an endoergic reaction and
needs free energy, which is released in the nucleotide triphosphate
hydrolysis. The sequence in which the individual nucleotides of side
chains occur along the nucleic acid chain is strictly fixed and genet-
ically determined. In DNA there are 4 “canonical” bases, guanine
(G) and adenine (A), being derivatives of pyrimidine, and cytosine
(C) and thymine (T), being derivatives of purine. In RNA thymine
is replaced by uracil (U). The edges of these bases are chemically
complementary such that A forms two  hydrogen bonds with T, and
C three hydrogen bonds with G. No other combinations of pairs lead
to bond formation between them. The matching patterns of hydro-
gen bonds allow a second strand of DNA, provided it has the proper
base sequence, to form a stable complex, the famous double helix.
In a double-stranded DNA molecule, its bases lie in the interior of
the helix and are held together by hydrogen bonds.

All living organisms pass on genetic information from gen-
eration to generation. This information is contained in the
chromosomes, which are made up of genes. The information
needed to produce a particular type of protein molecule is con-
tained within each gene. Genetic information contained within a
gene is built into DNA. The arrangement of A paired to T and G
opposite C ensures that genetic information is passed to the next
generation accurately. The two strands or helices of the DNA sep-
arate with the help of enzymes, leaving the charged parts of the
bases fully exposed (Sinden, 1994).

Genetic coding can be discussed using information theory. The
so-called genetic code is a detailed prescription regarding the syn-
thesis of proteins according to the algorithm given in Fig. 1.

The four nucleic acids (U, C, A, G or T, C, A, G, respectively)
can be ordered in triples, termed codons, in RNA or DNA to form
a genetic code for transcription and translation into amino acids.
While there are 64 possibilities of forming triple sets of the RNA
or DNA bases, there are numerous redundancies such that there is
correspondence to the 20 naturally occurring standard amino acids,
a stop codon (three combinations of amino acids code for a stop),
and a start codon (which also codes for the amino acid methio-
nine), giving rise to 22 elementary building blocks (distinct pieces
of information) for the construction of proteins.

Specific sequences of nucleotides code for the specific sequences
of amino acids that form proteins. Thus, discovering that any
one of these is in a specific location along a strand increases the
information content by log2 4 = 2 bits. However, as there are 20

amino acids, the identification of one particular amino acid requires
log2 20 ≈ 4.22 bits of information. We  therefore conclude that cod-
ing must be done by at least three nucleotides arranged in order.
Later on we discuss if information can be gained in the process of
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about 50% of the dry mass of a living cell. Each type of protein has
its own  unique structure and function. Proteins, due to their diver-
sity and functionality, perform most of the typical tasks of the cell.

Fig. 2. Processing of genetic information. Classical dogma: the information is car-
ried by DNA, which undergoes replication during the process of reproduction and
transcription into RNA when it is to be expressed; gene expression consists in trans-
GUG GCG

Fig. 1. Th

ranslation, which transfers information from an RNA sequence to
n amino acid sequence of a protein.

In a biological cell the DNA is too valuable to do the work of
ynthesizing proteins directly. Transcription of the coded DNA is
ccomplished by producing from it what are called messenger
NA (mRNA) molecules. The production of proteins is directed by
he mRNA, when they travel to the ribosomes, be specifying the
equence in which amino acids will be linked. We  have seen that
hree of the 64 possible combinations do not code for any amino
cid and act as terminators. When the ribosome reaches this portion
f the mRNA chain, the growth of the protein is halted. If a muta-
ion or error occurs in the DNA, all copies will carry it and incorrect
ynthesis will take place at the ribosomes, sometimes leading to
iseases and pathological abnormalities.

The sequence of events: DNA → mRNA → polypeptide → folded
rotein is illustrated schematically in Fig. 2.

There are 20 “canonical” amino acids; some others occur, but
ery rarely (Stryer, 1981). Using the Swiss-Prot and GenBank
atabases as the basis for the calculations, a probability table has
een constructed (Shen et al., 2006) for the occurrence of the 20
aturally occurring amino acids (see Table 1).

In the 20 amino acids designed by nature, what varies is the side
hain. Some side chains are hydrophilic while others are hydropho-
ic. Since these side chains stick out from the backbone of the
olecule, they help determine the properties of the protein made

rom them. The side chains exhibit a wide chemical variety and can
e grouped into three categories: non-polar, uncharged polar, and
harged polar. The sequence of amino acids in each polypeptide or
rotein is unique giving its characteristic three-dimensional shape
r native conformation.

. Amino acids, peptides, and proteins
In order to form a polymeric chain, amino acids are condensed
ith one another through dehydration synthesis reactions, which

re not spontaneous but occur through the energy-driven action
AG GGG G

tic code.

of the ribosome. A polypeptide chain of amino acids consists of
a regularly repeating part called the main chain or the backbone,
and a variable part, consisting of distinctive side chains. In some
cases even a change in one amino acid in the sequence can alter the
protein’s ability to function. The formation of a peptide bond is an
endoergic reaction and needs free energy, which is usually released
in the guanosine triphosphate (GTP) hydrolysis.

Long amino acid chains form proteins, which are the most
abundant macromolecules in the living cells, present in their mem-
branes, cytosol, cell organelles, and chromosomes. They constitute
lation of information written on RNA onto a particular protein primary structure.
The  polypeptide consisting of specific amino acids is folded into the protein’s ter-
tiary structure. The left panel represents a cell, and depicts the information flow
from DNA, through mRNA, to translation at a ribosome. The right panel represents
the transition between the unfolded and folded states of a protein.
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Table 1
Frequency distribution of all 20 naturally occurring amino acids in annotated protein
sequences contained in the Swiss-Prot database (release 43.0), and the frequency
distribution of the amino acids in characterized and hypothetical human protein
sequences from in the National Center for Biotechnology Information (NCBI) Gen-
Bank database (Build Number 34). The occurrence of each individual amino acid
has been averaged over the total number of amino acids found within each of the
databases. Table reproduced from Shen et al. (2006).

Amino acid single letter code Swiss-Prot frequency GenBank frequency

A 0.0777 0.0704
C 0.0157 0.0231
D  0.0530 0.0484
E 0.0656 0.0692
F  0.0405 0.0378
G  0.0691 0.0675
H  0.0227 0.0256
I 0.0591 0.0450
K 0.0595 0.0565
L 0.0960 0.0984
M 0.0238 0.0237
N  0.0427 0.0368
P 0.0469 0.0610
Q  0.0393 0.0465
R  0.0526 0.0552
S  0.0694 0.0799
T  0.0550 0.0534
V 0.0667 0.0613

A
c

l
P
s

s
c
r
t
a
a
F
t
c
g
t
p
l
f

t
a
d
B
m
f
4

t
t
a
t
c
f
r
p

of course, leads to a net entropy change in the cell fluctuating
W  0.0118 0.0121
Y  0.0311 0.0282

ll structural and functional properties of proteins derive from the
hemical properties of the polypeptide chain.

The levels of structural organization in globular proteins can be
isted as follows:
rimary sequence → secondary sequence → supersecondary
equence → domain → globular protein → aggregate

In a nutshell, the primary structure is defined as the linear
equence of amino acids in a polypeptide chain. It represents the
ovalent backbone and the linear sequence of the amino acid
esidues in the peptide chain. The secondary structure is charac-
erized by spatial organization in terms of structural motifs such
s alpha helices, beta sheets, random coils, triple helices and an
ssortment of other motifs usually in localized regions of a protein.
urther folding of polypeptide chains results in the formation of
ertiary structures that result from long-range contacts within the
hain that are stabilized by a combination of van der Waals, hydro-
en, electrostatic, and disulfide bonds. The quaternary structure is
he organization of protein subunits, or two or more independent
olypeptide chains, and it represents aggregates in which globu-

ar proteins are bound by non-covalent interactions spontaneously
orming oligomers of varying sizes.

The spontaneous act of protein folding is remarkable in that
he complex motion of the protein’s structural elements, i.e. amino
cids, transfers the one-dimensional sequence of data into a three-
imensional object and the process is a result of thermally activated
rownian motion. The net stabilization of the native state confor-
ation of a protein results from the balance of large forces that

avor both folding and unfolding. The net free energy of folding is
2 kJ/mol.

To estimate how long it would take a 100-residue polypep-
ide to complete a random search for the native state we assume
here are three possible conformational states for each residue
nd that it takes 10−13 s to interconvert between each state. For
he 100-residue polypeptide, there are 3100 [=5 × 1047] possible
onformational states. Assuming a single unique native state con-

ormation, it would take 5 × 1034 s or 1.6 × 1027 y. This absurd
esult, often referred as the Levinthal Paradox, clearly shows that
rotein folding does not occur by random search.
tems 111 (2013) 1– 10 5

A protein can assume a very large number of related but dis-
tinct conformational states whose distribution can be described by
a so-called energy landscape. Each substate is a valley in a 3N − 6
dimensional hyperspace where N is the number of atoms form-
ing the protein. The energy barriers between different substates
range from about 0.2 kJ/mol to about 70 kJ/mol. Note that confor-
mational entropy is meant to define the entropy associated with the
multiplicity of conformational states of the disordered polypeptide
chain.

Strait and Dewey (1996) analyzed a large data set of pro-
teins to determine the Shannon information content of a protein
sequence. In a statistical database, the most important issue is to
properly define the phase space and specifically whether the ele-
ments follow Markovian or non-Markovian interaction type. This
information entropy of proteins was estimated by three distinct
methods, namely a k-tuplet analysis, a generalized Zipf analysis,
and a “Chou-Fasman gambler.” Each method results in somewhat
different information values. The k-tuplet analysis is a “letter” anal-
ysis, based on conditional sequence probabilities. The generalized
Zipf analysis uses statistical linguistic qualities of protein sequences
to determine the Shannon entropy. The Zipf analysis and k-tuplet
analysis estimate the values of Shannon entropies as 2.5 bits/amino
acid. This is much smaller than the value of 4.18 bits/amino acid
obtained from the nonuniform composition of amino acids in pro-
teins. The “Chou-Fasman” gambler algorithm is based on the use of
specific rules for protein structure generation. It uses both sequence
and secondary structure information to predict the number of
possible amino acids that could form a proper sequence. The infor-
mation content of the 3D structure of a protein was calculated
using the Kolmogorov entropy (Dewey, 1996) which is defined as
the length in bits of the shortest computer program required to
describe a given object. Dewey (1996) showed that the Kolmogorov
entropy of a protein was less than 1.0 bits/amino acid. Thus, there
is more than enough information available in the protein sequence
to determine the protein structure. While the number of possi-
ble protein sequences is greater than immense number I = 10110,
there are correlations, which lead to grouping and redundancy. This
phase space reduction aspect, or compartmentalization, controls
the structure building in the cell. Pande et al. (1994) discussed the
role of non-randomness in protein sequences with implications for
evolution. Compartmentalization of sequences including applica-
tions of multi-fractals was  further analyzed by Dewey and Strait
(1996).

5. Entropy reduction in living systems

Living cells are dissipative, open, and far-from-equilibrium sys-
tems that lower the entropy utilizing an influx of energy and
molecular material in a multi-compartment structure with spe-
cific functional characteristics. Entropy reduction was discussed
early on by Schrödinger (1967) and it relies on both energy sup-
ply to create a metastable non-equilibrium state and electrical,
pressure and chemical potential gradients across semi-permeable
membranes. Electric potential differences also assist in the process.
As an open system, a cell operates cyclically exchanging mate-
rial and heat with the environment. High-energy molecules are
absorbed through pores in the membrane and their energy used
to synthesize components of the cell and maintain ambient tem-
perature. Heat is dissipated and waste products excreted so that
excess entropy in the environment is balanced by structure- and
information-production lowering the entropy inside the cell. This,
quasi-periodically close to the zero value. Cell death would mani-
fest itself in the breakdown of structures and functions leading to
a continuous entropy production as governed by the second law
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f thermodynamics. Overall, the entropy changes in the cell can be
ttributed to four distinct processes: (a) chemical reactions lead-
ng to the aggregation of molecules, (b) mass transport in and out of
he cell leading to concentration gradients across the membrane, (c)
eat generation due to metabolism of the cell, and (d) information
tored in terms of genetic code in both nuclear and mitochondrial
NA. Morowitz (1955) estimated that approximately 2 × 1011 bits
f information are contained in the structure of Escherichia coli
acteria, the simplest and best documented organism, a number
hich agrees with calorimetric data (Gilbert, 1966). However, the

stimated information capacity in the E. coli’s genome is only 107

Johnson, 1970), which is at first surprising but on closer examina-
ion, to be expected, as argued below.

Living cells, as all matter, must obey the energy conservation
rinciple, which takes the form of the first law of thermodynamics

U = DQ + DW.  (8)

In the thermodynamic sense, cells can be viewed as machines,
imilar to a combustion engine engaged in a Carnot cycle, per-
orming work and generating heat, requiring constant supply of
nergy and matter (i.e. energy-giving molecules like glucose). A
ore appropriate formulation of the energy balance is through the
ibbs free energy that accounts for a change in the numbers of
olecules and the presence of several molecular species:

 = U − TS + PV = �N or dG = −SdT + VdP + �dN. (9)

Hence, the entropy differential can be written as

S = dU

T
+ PdV

T
− �dN

T
, (10)

hich indicates that entropy changes can be achieved through heat
roduction, change of volume or a flux of molecules.

Since the entropy of an ideal gas of N particles with total energy
, of mass m each, is (Landau and Lifshitz, 1969)

S

k
= N

{
ln

(
V

N

)
+ 3

2
ln

(
mE

3��2N

)
+ 5

2

}
(11)

his means that confining molecules within space, as is the case
ith building a cellular structure, reduces the exploration volume
, and thus reduces the entropy of the system accordingly. Con-
ersely, mixing two molecular species with numbers N1 and N2 in a
xed volume V by opening a partition between their compartments
1 and V2 increases the entropy by the amount given below:

S  = N1 ln
(

N

N1

)
+ N2 ln

(
N

N2

)
. (12)

Therefore, keeping various molecular species separated in indi-
idual compartments (including the mitochondria, the nucleus, the
ndoplasmic reticulum, etc.) is another entropy reducing process.
hile the above equations strictly speaking apply to equilibrium

ituations, an assembled structure of the cell from its building
locks, by and large stays in its morphological state except for mito-
is and continuous material transport which can be regarded as a
econd order correction.

Marína et al. (2009) derived specific equations describing the
ntropy due to the compartmentalization of components in eukary-
tic cells as a function of cell and compartment volumes, and of
he concentration of solutes. Based on both known and estimated
alues of volume and solute concentrations they found that the
ontribution of compartmentalization to the decrease of entropy
s approximately −14.4 × 10−14 J/K cell (−0.7 J/K L) in the case of
accharomyces cerevisiae,  a typical eukaryotic cell, and approx-

mately −49.6 × 10−14 J/K cell (−1.0 J/K L) in the more complex
hlamydomonas reinhardtii.  They compared these values with other
ossible contributions to entropy reduction, such as the informa-
ional entropy of DNA and the conformational entropy of proteins.
tems 111 (2013) 1– 10

They concluded that compartmentalization is the most essential
development that significantly decreases the entropy of living cells
during biological evolution.

Enzymatic catalysis against the energy barrier is a process
that helps achieve such a deliberate separation of molecular
species. In fact, a variety of solute molecules are contained within
cells. The cellular fluid (cytosol) has a chemical composition of
140 mM K+, 12 mM Na+, 4 mM Cl− and 148 mM A−, where the
symbol A stands for protein. Cell walls are semipermeable mem-
branes and permit transport of water but not of solute molecules.
We use Dalton’s Law to determine the osmotic pressure inside
a cell. A mixture of chemicals, with concentrations c1, c2, c3,
. . .,  dissolved in water has the total osmotic pressure equal to
the sum of the partial osmotic pressures, ˘ ,  of each chemical:

 ̆ = ˘1 + ˘2 + ˘3 + · · · = RT(c1 + c2 + c3 + · · ·). The total osmotic pres-
sure inside a cell, ˘ in, can be estimated as 7.8 × 104 Pa while the
cell exterior is composed of 4 mM K+, 150 mM Na+, 120 mM Cl− and
34 mM A− and, as a consequence the total osmotic pressure of the
cell exterior, ˘out, is given by 7.9 × 104 Pa. Because ˘ in and ˘out

are quite close in value, the osmotic pressure difference between
the exterior and interior part of the cell is very small, as it is the net
pressure exerted on the cell wall that matters. The cell has a sophis-
ticated control mechanism to do this. This can, again, be seen as an
entropy reduction mechanism.

Looking deeper into the issue of entropy reduction by the cellu-
lar process, in the production of macromolecules such as proteins,
naturally the atoms that are assembled lose their degrees of free-
dom by being joined together. In the simplest case of a peptide chain
viewed as a semi-flexible rod, each amino acid prior to the assembly
process possesses three translational and three rotational degrees
of freedom, in addition to some internal degrees of freedom, which
by and large survive the assembly process. After a peptide has been
assembled, only small rotations around the backbone are permit-
ted effectively eliminating five degrees of freedom per amino acid.
Consequently, this can be viewed as an entropy reduction process.
This negative conformational entropy is created in addition to the
combinatorial contribution that described the probability of select-
ing a particular sequence of amino acids in the peptide, i.e. k ln 20N

where N is the number of amino acids in a peptide. The folding of
a chain into a globular protein restricts the motion of its member
groups eliminating some rotations altogether and limiting others.
This, again, can be seen as a reduction of the phase space whose
volume changes from  ̋ to ˝′ with an attendant entropy reduc-
tion of �S  = k ln(˝/˝′). For illustration purposes, we have used
here a somewhat simplistic approach via a microcanonical ensem-
ble where all states in the phase space have the same probability
while in reality (see Table 1), a canonical ensemble should be used
leading to a more accurate but also a more complicated formula,
namely:

S = kBT
∂

∂T
ln Z + kB ln Z, (13)

where Z =
∑

iexp(− Ei/kT) is the partition function of the system.
However, since the system is open, a grand canonical ensemble
technique should in fact be used in the evaluation of the resultant
entropy change.

The protein synthesis process, when looked at from the point of
view that starts with the information content in the coding regions
of DNA and continues with transcription into RNA followed by
translation into an amino acid sequence, brings another entropy
reduction paradox into light. Suppose a particular gene has 3N
nucleotides and codes for a protein with N amino acids. Because

there are four types of nucleotides available and 20 amino acids
to choose from, the corresponding entropies do not match. The
combinatorial entropy of this particular gene can be calculated as
S1 = 3NkB ln 4 while that of the resultant protein is S2 = NkB ln 20.
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he difference between the final (protein) entropy and the initial
gene) entropy is always negative since:

S  = S2 − S1 = NkB ln
(

20
64

)
(14)

r in terms of the equivalent molar heat of reaction:

 = T�S  = −1.16RT. (15)

Clearly, a spontaneous process that cools the environment con-
radicts the second law of thermodynamics. However, a process
hat requires the input of work to reduce entropy (and hence
xpelling heat to the environment while cooling the local area
here the reaction takes place) is well-known. Refrigerators oper-

te on exactly the same principle. The question is: “Where does
nergy input come into play in protein synthesis?” It turns out that
he energy cost of protein synthesis is very substantial and can be
ummarized as following these steps:

. Charging of tRNA requires the input of two ATP molecules.

. Binding of tRNA to a ribosome requires the input of one GTP
molecule.

. Translocation requires the input of one GTP molecule.

The total cost can be estimated as the energy of four high-energy
hosphate bonds for each peptide bond formed, i.e. per each amino
cid polymerized. This does not include additional energy costs
nvolved in DNA transcription. Since the free energy released in the
ydrolysis of ATP into ADP amounts to approximately 30.5 kJ/mol,
nd the hydrolysis of GTP is highly substrate dependent but compa-
able, we conclude that the work that needs to be performed by the
ell in the process of adding an amino acid to a peptide sequence in
he faithful performance of protein synthesis is at least 120 kJ/mol,
r

W = 48RT, (16)

hich exceeds by almost two orders of magnitude the correspond-
ng entropy reduction contribution discussed above. Other aspects
hat can be included in the total entropy analysis involve the change
n the translational entropy of water that surrounds both DNA
nd protein surfaces and, as a result, loses several degrees of free-
om per molecule. It has been demonstrated that a folding process
uch as protein folding leads to a large amount of entropy increase
Kinoshita, 2009) which would additionally mediate the effects
f combinatorial entropy reduction. In conclusion, when precise
nergy balance is made, the seeming paradox of entropy reduction
s clearly resolved by the energy cost of the cellular machinery that
nzymatically catalyzes the required biochemical reactions taking
lace (Lambert, 1984).

It should be stressed that the second law of thermodynamics
s valid for closed systems, and it states that in closed systems
rreversible processes such as heat generation lead to entropy
ncreases while reversible processes involve no heat and no entropy
hange. Through the introduction of mean values of chemical
otentials, the second law of thermodynamics has been general-

zed to open systems. In chemical thermodynamics, it is common
o compute equilibrium composition at constant values of the
hemical potential and it is done the same way by minimizing
he corresponding potential function. A living cell is an open sys-
em, and taken together with its surroundings the total entropy
hange should never be negative. In closed systems conditions
or equilibria are expressed as either minima of the appropriate
hermodynamic potentials (e.g. Gibbs free energy) or maximum

ntropy requirements (Landau and Lifshitz, 1969). In open systems
here is no such rule, except one looks for stability conditions of a
iven state, i.e. whether under a small perturbation the state will
volve or retain its equilibrium value.
tems 111 (2013) 1– 10 7

Another way of discussing entropy is in terms of order and dis-
order. The most pertinent physical transformations between states
of matter that are ordered and disordered are called phase tran-
sitions. Continuous (second order) phase transitions involve no
entropy change at the critical point, and ordering in the system
sets in gradually, as seen through the bifurcation of an associated
order parameter. In first order phase transitions, on the other hand,
an entropy jump is always present at the transition point. Since
Q = T�S is the latent heat of transition, this entropy jump is pro-
portional to the latent heat of transition. Phase transitions with
both positive and negative latent heats exist, i.e. entropy creation
or reduction takes place in the system on supplying or withdraw-
ing heat, but always �G  = 0 at the transition point. This does not
violate the second law of thermodynamics since the system is not
isolated thermally from the environment that may receive excess
heat. This example is, of course, relevant to a living cell, if one were
to speculate about jump-starting a living process by physical means
or changing the state of a living system (Davies et al., 2011) from
healthy to diseased (e.g. cancerous).

As emphasized earlier, a living cell constantly consumes energy
to maintain its structure and vital functions. The energy comes
basically in two  forms: photons (in plants) and glucose-containing
compounds (in animals). Glucose is easily utilized to synthesize
ATP. Each glucose molecule gives rise to approximately N = 30
ATP molecules and the associated entropy production is given by
(Daut, 1987)

dS

dt
= �G(glucose)J(ATP)

NT
, (17)

where �G(glucose) = 3 × 106 J/mol is the free energy of glucose oxi-
dation and J(ATP) = 10−13 mol/h is the flux of resultant ATP for a sin-
gle cell (Kim et al., 1991). At the physiological temperature T = 310 K
this results in an entropy rate of change for a single cell in the
range of 10−14 J/K s. This can be compared to only 0.7 × 10−17 J/K s
of entropy reduction due to DNA transmitted information, i.e. less
than one thousandth as stated above. This is not surprising since
many other processes are at work to keep the cell in its metastable
(low entropy) state. First of all, the membrane itself consisting of
phospholipids comprises some 60% of the cell’s mass and presents
a highly ordered structure requiring an entropy reduction to be
put in place. Likewise, proteins and peptides are composed of up
to several thousand atoms, each with fairly well specified posi-
tions, leading to a net entropy drop compared to a non-living state.
Finally, approximately 50% of the metabolic energy of a cell is uti-
lized in the process of ion pumping across the membrane (Rolfe
and Brown, 1997), mainly as a result of trans-membrane potential
and the work of ion pumps. The latter rely on molecular recognition
mechanisms. These mechanisms, when a pump is activated, lower
the entropy by binding the two  molecules together. The subsequent
placement of an ion or a macromolecule within the confines of a
membrane permanently lowers the entropy by volume of explo-
ration reduction, as discussed above. A release of a waste product
into the environment results in a precisely opposite effect.

Chemical reactions may  either absorb or release heat much like
first order phase transitions, i.e. they may  be either exothermic
or endothermic. Since almost all living processes are in essence
chains of chemical reactions, they can be analyzed from the point
of view of entropy or information theory. In particular, enzymes use
a fine-tuned selection mechanism of molecules that exhibit shape
complementarity to a recognition pocket. This is called a lock-and-
key mechanism by which enzymes force particular orientations of
the catalytically reacting molecules and increase the correspond-

ing reaction rates by several orders of magnitudes. Consequently,
this process can be viewed as information processing whereby the
shapes of binding domains are recognized, the molecules are opti-
mally positioned for binding and in some cases particular bonds
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re broken and others created. Some enzymes belonging to the
lass of allosteric proteins may  adopt two or more stable confor-
ations acting like switches, being activated in one conformation

nd inactive in some others. Following a binding and a catalysis
vent, enzymes return to their original conformation and act cycli-
ally. From the point of view of information and entropy reduction,
hey do not overall decrease the entropy of the cell (Loewenstein,
999). At best, they break even since any piece of information that
n enzyme invests in a catalytic reaction is re-collected at the end of

 cycle. Furthermore, it is important to stress, that the information
ecessary to perform a particular function (molecular recognition)

s not entirely contained in an enzyme. In order for an enzyme to
e effective, it must be activated by the environment in which it
esides: cytoplasm containing inorganic ions and other molecules.
hus, one may  say that the information is contained in the entire
ystem, i.e. the cell. What then is the total information content of a
ell?

. Biological information

Production of DNA takes place even in non-replicating cells.
 typical mammalian cell polymerizes approximately 2 × 108

ucleotides of DNA a minute into nuclear RNA (Brandhorst and
cConkey, 1974), out of which only 5% end up in the cyto-

lasm coding for protein synthesis (Dreyfuss et al., 1993). Since
here is redundancy in coding of nucleotide triplets for the 20
mino acids, the original 6 bits of information in DNA translate
nto log2(20) = 4.2 bits in a protein. Consequently, on the order
f 0.7 × 106 bits/s are transmitted from the nucleus to the cyto-
lasm. This is augmented by a small fraction of information due
o mitochondrial DNA (Alberts et al., 1994). As shown above, this
s but a small fraction of the total information production (nega-
ive entropy) of a living cell. The vast majority of information is
ontained in the organized structure of the cell and its compo-
ents.

Since the Shannon information formula employs probabilities
f particular states, there are inherent dangers of incorrectly deter-
ining these probabilities, especially when this is done purely

ombinatorially as is for example the case in an amino acid or
ucleic acid sequence analysis. However, this is not necessarily a
andom choice situation since different choices lead to different
robability values (see Table 1), and a more appropriate description

s given by the canonical ensemble Boltzmann distribution formula
i = p0 exp(−Ei/kT). In order to make this estimate work from first
rinciples, one needs to know the energies Ei and hence the Hamil-
onian for the system. Therefore, the apparent information estimate
f I = kB ln Nn, where n is the number of members in a string, may  be
ignificantly larger than the true value of −S from thermodynamic
stimates of a given state, a maximum entropy state for equilibrium
nd hence a minimum information content. For a string of choices
e.g. amino acid sequence in a peptide or a nucleic acid sequence
n a DNA or RNA molecule), this may  lead to “basins of attraction”
avoring some combinations more strongly over others. Further-

ore, there could be evolutionary retention of favored choices and
he establishment of hierarchies of order. An immense number has
een defined as I = 10110 and represents a clear computational bar-
ier even from the point of view of cataloguing such an enormous
umber of objects. Immense numbers commonly appear in biol-
gy: both DNA and protein sequences are immense numbers arising
rom the sheer numbers of possible combinations in which these

acromolecules may  be formed. However, in view of the argument

bove, restricting the phase space by forming basins of attraction
ue to intramolecular interactions may  result in a hugely reduced
umber of biologically relevant combinations one would encounter

n practice.
tems 111 (2013) 1– 10

Furthermore, a clear distinction between information and
instruction should be made in the context of cell biology. While
the former was  introduced on purely statistical grounds as a mea-
sure of the number of choices possible when making a selection for
a string of elements, instruction implies the existence of a message,
a messenger, and a reader who would be able execute the message.
A classic example of this is the synthesis of amino acids contained
in the triples of DNA and RNA base pairs. While there is the same
information content in every triplet, namely kB ln 43 = 6 bits, some
amino acids are coded uniquely by a single triplet and some by
two, three, four, etc., different codons (see Table 1). This is obvi-
ous in view of the fact that there are 64 possible triplets of base
pairs while only 20 distinct amino acids, hence the redundancy.
A similar difference between information and instruction can be
found in the genome where in addition to the coding sequences
of DNA, some of which are of vital importance to the very survival
of a given organism, one finds so-called junk DNA  that has appar-
ently no coding value but represents a vast majority of the DNA
sequence. We stress here that information can be easily confused
with instruction.

DNA and RNA are thought to be such biological messengers, and
so are hormones and various signaling molecules such as kinase and
phosphatase enzymes. However, as shown earlier, it appears that a
vast majority of information content is not instructional in nature.
This is akin to simple algorithms like the logistic map  or fractal
recursive relations that give rise to great mathematical complexity
of the results that follow. Similarly, DNA can be viewed as an algo-
rithm that spans an awe-inspiring complexity of living cells. While
coding for protein synthesis is contained in the genetic code, it is
most improbable that details of structure formation need special
coding. They most likely unfold due to self-organization inherent
in the dynamics of the synthesized products. This type of behavior
is well-known to both physicists and chemists.

In non-equilibrium systems such as autocatalytic chemical reac-
tions of the Brusselator type (Prigogine, 1980), order is created
and sustained by means of non-linear interactions and external
forcing. Another important property of non-linear systems is the
possibility of self-assembly, for example in pattern forming crystal
growth. This provides an example where there is no necessity for
an instruction-driven creation of order and structure. Sometimes,
when discussing the assembly of bio-matter, concern is unduly
given to the need for instruction in putting the building blocks
of matter together piece by piece. While there are clear instruc-
tions for the amino acid sequences in the genome, the details of
higher order structure formation need no special encoding. They
may  emerge spontaneously as an attractor in non-linear dynamical
system that we call a living cell as a result of biological self-
organization (Kauffmann, 1993).

We postulate, therefore, the existence of two types of informa-
tion in biological systems: (a) structural information – i.e. negative
entropy – and (b) functional information. The former is sim-
ply related to a neat and tight packing of the various molecules
into macromolecules and macromolecules into organelles that
comprise the cell. The latter on the other hand, pertains to the
functioning of the cell and hence the rate and amount of chemi-
cal reactions taking place. The two  forms are somewhat related but
not identical. Imagine the construction of a car as an analogy. It may
look perfectly good but if the gas line is cut, it will not be able to
run. The same holds true for a living cell. Some key reactions if not
properly executed, will lead to the cell death. While structural infor-
mation should be maximized meaning entropy reduction by the
cell, functional information is concerned with how rapidly infor-

mation is being exchanged. Moreover, the cell must make sure that
the information exchange between its parts is carried out faithfully,
i.e. it is error-free. In most sensitive areas such as the coding regions
of DNA, error correction mechanisms are actively involved by the
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se of DNA repair enzymes whose work assures proper information
ransfer but it requires energy expense on the part of the cell.

There has been significant progress in our quantitative under-
tanding of information content involved in DNA, RNA championed
y Schneider (2001) and transcription factors by Kim et al. (2003)
nd by for macromolecules Sadovsky (2003) and even whole micro-
ial genomes by Lio (2003).

. Conclusions

The various points of reference regarding the nature of the liv-
ng state undoubtedly reflect the prevailing Zeitgeist of the period
n which a given theory has been created. The viewpoint of repre-
enting the cell as a machine, or even a factory, closely mirrors the
orldview of the industrial revolution of the 19th century. Like-
ise, the currently popular opinion that living cells are intensely

ngaged in some type of computation is closely linked with the
nformation technology revolution ushered into the second half of
he 20th century as a result of the proliferation of computers in
ur daily lives. Both points of view have merits, i.e. the cell obeys
he laws of physics such as the first law of thermodynamics and
ence can be viewed as a thermodynamic machine and simulta-
eously it locally acts against the second law of thermodynamics by
reating structural and functional order. In other words, it creates
nd maintains information by expending energy produced from
utrient in the form of ATP and GTP molecules. The latter aspect

s thermodynamically analogous to the way a refrigerator works.
owever, a biological cell also processes information and engages

n signaling thereby actively performing computation. It is safe to
ay that living cells can be viewed as both micro-factories (with
ano-machines performing individual tasks), and biological com-
uters whose nano-chips are the various proteins and peptides in
ddition to DNA and RNA. Most of the cell is what we could call
ardware while a small fraction is analogous to computer soft-
are (for example the genetic code in the DNA that instructs for

he synthesis of proteins).
Finally, it is worth stating that the role of information and

ntropy in living cells, which has been the focus of this arti-
le, is becoming a topic of serious investigations in connection
ith health and disease. For example, this is becoming increas-

ngly clear in cancer where molecular changes can be quantified
n terms of entropy gain or information loss (Frieden and Gatenby,
011; Davies et al., 2012). In the present issue, entropic changes
an be seen affecting embryogenesis at the level of intracellular
e-organization of the cytoskeleton, directly seen in the Ising-
ike phase transition of the cortical microtubules (Tuszynski and
ordon, 2012) where there interactions overcome entropic disor-
er. This has been successfully simulated in a computational model
f microtubule dynamics (Nouri et al., 2012).
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